
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Interactive Installation with Underwater
Flocking Animals for Children

Filip Ježowicz

Supervisor: Ing. Uršula Žákovská
June 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

503178 Personal ID number: Ježowicz Filip Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Games and Graphics Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Interactive Installation with Underwater Flocking Animals for Children

Bachelor’s thesis title in Czech:

Interaktivní Instalace s Podmořskými Flokujícími Zvířaty pro Děti

Guidelines:

Get acquainted with the theory of real-time and precomputed flocking algorithms in the gaming industry, simulation and
animation. Explore existing solutions for animal flocking in game development, mainly for Unity and Unreal Engine. Analyze
flocking behaviour in nature and compare it to existing solutions in game development. Propose five different ways to
make an interactive screen installation for museums or galleries. Choose one and design a multiuser interactive screen
with underwater life suitable for entertaining children. In the final implementation, at least two life forms should exhibit
flocking behaviour. The Flocking algorithm should take advantage of Unity’s ECS framework to optimize for performance.
Compare the computational demand of flocking implementation based on GameObject and ECS frameworks. Test the
interactive installation with a group of children (at least three) of your choice.

Bibliography / sources:

[1] Satz, Helmut. (2020). The Rules of the Flock: Self-Organization and Swarm Structure in Animal Societies.
10.1093/oso/9780198853398.001.0001.
[2] Craig W. Reynolds. (1987). Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th
annual conference on Computer graphics and interactive techniques (SIGGRAPH '87). Association for Computing Machinery,
New York, NY, USA, 25–34. https://doi.org/10.1145/37401.37406

Name and workplace of bachelor’s thesis supervisor:

Ing. Uršula Žákovská Department of Computer Graphics and Interaction FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 16.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Uršula Žákovská
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank Unity for its effort
to improve the stability and extend the
functionalities of the Data-Oriented stack
technology. Huge thanks belong to my
supervisor Ing. Uršula Žákovská for the
guidance and advice she gave me during
my work. My gratitude belongs to Ing.
Ondřej Slabý for the calibration of the
scene cameras and his entire team for the
amazing work they have done on the inter-
active wall with built-in motion-capture
functionalities.

And lastly, I would like to thank my
parents and my whole family for their
relentless support. It means the world to
me.

Declaration
I hereby confirm that this thesis and

the work presented in it is entirely my
own. Where I have consulted the work
of others this is always clearly stated.
All statements taken literally from
other writings or referred to by analogy
are marked and the source is always given.

In Prague, 20 May 2023

Signature:

v

Abstract
The main purpose of this work is to get
acquainted with the phenomenon of ani-
mal flocking observed in nature and the
creation of an interactive underwater sim-
ulation for children using Unity’s Data-
Oriented Technology Stack (Dots) with
Entity Component System (ECS). Avail-
able solutions for animal flocking that can
be found on the Unity asset store and Un-
real Market are examined as well. A mod-
ified version of Reynold’s Boids algorithm
is used for the purposes of the simula-
tion and a comparison between the Object
Oriented Programming (OOP) approach
and implementation that leverages perfor-
mance using the ECS is provided. For the
purposes of the interaction, an Interactive
wall with motion-capture functionalities
developed at Czech Technical University
in Prague was used. The simulation was
tested with a group that consisted of both
children and adults. It was concluded
that the performance gained by the usage
of the ECS approach instead of a classic
OOP approach is significant and opens
new possibilities in real-time simulation.

Keywords: Entity Component System,
Data-Oriented technology stack, Boids,
Interactive simulation

Supervisor: Ing. Uršula Žákovská
Karlovo náměstí 13,
E-423.
12000 Praha 2

Abstrakt
Hlavním cílem této práce je seznámit se
s fenoménem flokování zvířat v přírodě
a vytvoření interaktivní podvodní simu-
lace pro děti za pomocí Datově oriento-
vané technologie (Dots) dostupné v her-
ním enginu Unity. Dostupná řešení pro
flokování zvířat, která jsou k dostání na
Unity asset storu a Unreal Marketplace
jsou taktéž prozkoumána. Upravená verze
Reynoldsova Boids algoritmu je použita
pro potřeby simulace a porovnání mezi
řešením využívajícím objektově oriento-
vané programování (OOP) a Entity Com-
ponent System(ECS) alternativu, která
značně zvyšuje výkon simulace, je taktéž
součástí této práce. Za účelem interakce
byla použita Interaktivní stěna vyvíjena
na Českém Vysokém Učení Technickém v
Praze. Simulace byla otestavána na sku-
pině, která se skládala z dětí i dospělých.
Na základě porovnání flokovacího algo-
ritmu za použití technologie ECS s OOP
přistupem jsem došel k závěru, že použi-
tím ECS přistupu lze dosáhnout značného
zvýšení ve výkonu a zároveň ECS alterna-
tiva otevírá nové možnosti pro simulace v
reálném čase.

Klíčová slova: Entity Component
System, Data-Oriented technology stack,
Boids, Interactive simulation

Překlad názvu: Interaktivní aplikace s
Podmořskými Flokujícími Zvířaty pro
Děti

vi

Contents
1 Introduction 1
2 Getting acquainted with the
phenomenon 3
2.1 Why do they flock 3

2.1.1 Migrating birds 3
2.1.2 Ants . 4
2.1.3 Bees . 4
2.1.4 Answer . 4
2.1.5 A Mystery 5

2.2 Basic Concepts Of Animal Flocking 5
2.2.1 Behavior relation to atoms of

iron . 5
2.2.2 Criticality 6
2.2.3 Self-organized criticality 7
2.2.4 Emergent behavior 8

3 Pre-implementation part 11
3.1 Real-time vs. pre-computed

algorithms . 11
3.2 Flocking in computer games vs

science simulations 11
3.3 Basic animal flocking algorithms 13

3.3.1 Boids . 13
3.3.2 Self-driven particles 15
3.3.3 Density induced transition in

the school of fish 16
3.3.4 Wolf-like behavior 17

3.4 Available assets 19
3.5 Suitable space partitioning

structures . 20
3.5.1 Voronoi neighborhoods 20
3.5.2 K-D Tree 22
3.5.3 Cube space partition map . . . 23

4 Implementation 25
4.1 Functionalities 25

4.1.1 Obstacle Avoidance 25
4.1.2 Boids flocking behavior 26
4.1.3 Other optimizations 28

4.2 Entities, Components and Systems
terminology . 28
4.2.1 Basics . 28
4.2.2 Aspects and Authoring scripts 30
4.2.3 Terminology Sum-up 30

4.3 Dealing with the new technology
and an error-prone code 30

4.3.1 Decomposition of the
operations . 30

4.3.2 File management 31
4.3.3 Actively search for help 31

4.4 Interactive screen options 32
4.4.1 Multiple-touch screen tap-like

interaction . 32
4.4.2 Speech recognition interaction 32
4.4.3 Motion-capture based

interaction . 33
4.4.4 Remote phone interaction . . . 33
4.4.5 Holographic projection 33
4.4.6 User interaction limitations . 34
4.4.7 Chosen Interaction option . . . 34

4.5 Testing . 35
4.5.1 OOP and ECS approach

comparison 35
4.5.2 User testing 39

5 Conclusion 41
A Bibliography 43
B Attachments 47
List of Acronyms 47
Enclosed Files 48

Builds . 48
Scripts . 48

vii

Figures
2.1 Paramagnetic to ferromagnetic v.1 6
2.2 Paramagnetic to ferromagnetic v.2 7

3.1 Description of basic rules of Boids
algorithm . 13

3.2 Onset of Connectivity 15
3.3 Illustration of the fish

neighborhoods used in the research 16
3.4 Formation of the school of fish

related to the amount of fish present
(N) . 17

3.5 Wolf-pack ambush 18
3.6 Voronoi diagram 20
3.7 Distribution of points in 2D space 22
3.8 K-D tree visualization 22
3.9 Cube Space Partition Map 23

4.1 Static obstacle avoidance vector 26
4.2 The result vector "ret" calculation

based on hierarchy structure 27
4.3 Performance benchmark

visualisation. 38

Tables
4.1 Testing device specifications. . . . 35
4.2 Boids benchmark 37

viii

Chapter 1
Introduction

A brief detour to biology will provide the necessary opening by answering a
question: “Why do animals flock?”.

The next step is to get acquainted with basic concepts of animal flocking
such as Criticality and Emergent Behavior by understanding other natural
phenomena that exhibit similar behavior patterns.

Afterward, a series of topics are discussed. First, the differences between
real-time vs. pre-computed approach in flocking algorithms and animal
flocking in the game industry vs. animal flocking during science simulations
are inspected. Second, the list of selected animal flocking algorithms and
approaches, providing a template on how to implement flocking behavior is
assembled. Third, available functionalities of assets available on Unity Store
and on Unreal Engine Market are given for comparison with basic flocking
algorithms.

Functionalities are stated and described in as much detail as the scope of
this work allowed in the implementation part of this work. The ECS workflow
and its difficulties are contemplated upon. The comparison between the ECS
and OOP approach is discussed. Testing of the simulation on the Interactive
wall and the observations collected during the process are discussed alongside
propositions for further improvements.

The conclusion summarizes the topics present in this work, draws a conclu-
sion based on the ECS and OOP comparison, and puts the learned information
into a wider perspective.

1

2

Chapter 2
Getting acquainted with the phenomenon

2.1 Why do they flock

Animals flock mainly for survival reasons. More eyes see more. Individuals
inside of the herd or school or any other flock can possibly rely on the
perception abilities of their comrades on the edges and relax. Life in a herd
can also increase the probability of finding a suitable mating partner. Overall,
the flock is one of the basic defense strategies observed in nature and countless
articles and discussions support this claim. But can this behavior be described
as a consequence of evolution?

The question "Why do they flock?" is strongly connected with one under-
lying thought: The survival of the fittest in the Darwinian sense is often
surpassed by the survival of the group or species. This claim is supported by
the following examples.

2.1.1 Migrating birds

When birds migrate and travel hundreds or even thousands of miles, they
travel in specific formations. Not every position in the formation is favorable.
Some birds must work harder to maintain the speed and altitude than others.
What might come as a surprise is that birds change positions periodically
during the flight to equally minimize the expense of energy of each individual
bird in the flock. No individual has a preferred position in the formation at
the expense of another one. And in that way the probability of survival of all
increases, rather than the survival of the strongest specimen[Sat20].

3

2. Getting acquainted with the phenomenon
2.1.2 Ants

Ants form an amazing ecosystem. They can find unbelievably sophisticated
and effective routes for food and material transport. Traffic on such routes is
governed by three rules that are adhered to by all without exception:..1. Everyone proceeds with the same speed...2. Everyone keeps in their lane—no overtaking...3. At a bottleneck, travelers wait in small groups to allow alternating

passage of the traffic in each direction (“zipper system”).

It has been proven that these principles are obeyed even in the case of
extremely narrow bridges. And the effectiveness of such an approach can’t be
questioned (similar rules make the automobile traffic in large American cities
such as Los Angeles move much more effectively than it does in old European
towns). Based on this observation Helmut Satz provides an interesting
hypothesis, that insect states have in a Darwinian sense eliminated cultures
based on individual decisions [Sat20].

2.1.3 Bees

Consider the bee workers. Apart from having developed an incredibly so-
phisticated way of communicating discovered sources of food through dance
(performed both individually and in the group) [Sat20], another interesting
fact begs to be mentioned.

While being perfectly adapted for taking care of larvae and providing the
food necessary for the survival of the beehive, they are infertile. They pass
on nothing. On the other hand, the queen, that is completely dependent
on the workers and incapable of surviving on her own is the source of all
future generations. The reason behind this is complex and definitely out of
the scope of this work. But in general, supports the idea of the survival of
the species at the expense of the survival of the strongest specimen.

The details about why the survival of the beehive depends on the repro-
duction of a seemingly helpless queen are further discussed in the book The
Animal Flocking [Sat20].

2.1.4 Answer

It gets more interesting the closer we look. The idea of the survival of the
fittest is not merely surpassed by the survival of the species. It is its next
step of evolution. When animals flock, they become one newly emergent
entity that is fitter to survive. It possesses new abilities that were inaccessible
before. That is why they flock.

For those interested in more behavioral detail, other examples and answers
can be found in the book “The Rules of the Flock” by Helmut Satz [Sat20].

4

...........................2.2. Basic Concepts Of Animal Flocking

2.1.5 A Mystery

It might seem that we now understand perfectly why animals flock. But do
we? Before delving into more technical details about what mechanisms might
initiate the flocking, I feel it necessary to state that we do not. The following
example demonstrates such a claim.

In Rome, during evenings thousands of starlings perform outstanding
formations in enormous flocks. Unlike in the case of flocking behavior during
migration, the reason flocks of starlings in Rome appear in the evening is
unknown. They are obviously not in search of food, since they spent the
whole day feeding in the fields outside the city. They have no need to avoid
any predators. And they are not leaving for several weeks for their summer
destinations either. So why would they flock in such a spectacular way? We
just don’t know. In my opinion, the real reason might be somehow related to
the creation of locust swarms.

Upon reaching a critical point of density (75 individuals per meter squared)
the locust swarm is created. Sudden production of serotonin takes place in
the locust’s body. This even results in a change in its color. When such a
locust wanders away a strong pull toward the center of the swarm takes place.
This was the origin of one of the greatest observed locust swarms in human
history in 1875 (approximately 12.5 trillion locusts formed a swarm)[Sat20].

Could it be that starlings form their flocks on Rome’s evening sky out of pure
happiness (because of the sudden serotonin increase in their bloodstream)? I
admit this to be a speculation, but an intriguing one I must add. Further
research and experiments in this field would be very interesting.

2.2 Basic Concepts Of Animal Flocking

Consider the birds feeding on the ground. They form a group, but their bodies
point and move in different directions and their movement is asynchronous.
Then suddenly they get spooked by some external element. They all fly
towards the sky as one body pointing in the same direction and often with
the almost identical velocity. There is a parallel for such behavior in physics,
that is very well-researched and documented.

2.2.1 Behavior relation to atoms of iron

There are two basic states of atoms observed in a piece of iron. The first
one is called the paramagnetic state and the second one is the ferromagnetic
state. In the following figure 2.1, the difference in the alignment of atoms of
iron between these stages can be seen.

Above a certain temperature threshold, known as Curie Point (768 degrees
centigrade) all atoms spin in different (random) directions [Sat20]. They have
a natural tendency to align themselves accordingly to one another, but the
energy provided by temperature disturbs their effort. This state is known as
paramagnetic and can resemble birds feeding on the ground. If birds resemble

5

2. Getting acquainted with the phenomenon

Figure 2.1: Transition from a paramagnetic state above the Curie temperature
(a) to a ferromagnetic state below that temperature (b) and a state of perfect
order at absolute zero (c)[Sat20].

atoms of iron, the temperature might have a similar effect as a need to look
for food. Believable implementation of such searching for food could be a
noise in communication between the birds. Let’s say all birds try to align
themselves, but they perceive the orientation of other birds with some degree
of error. The bigger the need to search for food on the ground, the bigger
the error that leads to the more random movement of birds. Such behavior
is proven to be attainable in flocks of high density if sufficient noise in their
communication is present [VCBJ+95].

When the temperature falls below the Curie point, the tendency of atoms
to align themselves can’t be suppressed any longer. Groups of atoms aligned
in the joint direction emerge abruptly. The temperature is still high enough
to cause minor distortions inside the groups and produce inconsistency of
alignment between groups in general, but there is at least partial order. Such
a state is called ferromagnetic. With decreasing temperature, the alignment
error between atoms and groups of atoms decreases. It has been proven
both mathematically and through simulations that upon reaching absolute
zero (-273 degrees centigrade) all atoms inside iron are perfectly aligned.
Generally, they could point in any direction. On earth, they point toward the
north. Such a perfect alignment can be obtained before reaching absolute
zero though. If the external field was applied to iron in a ferromagnetic state,
enough energy would be provided for atoms to align themselves and we would
obtain a true magnet.

2.2.2 Criticality

Since the times of Gottfried Wilhelm von Leibnitz and Sir Isaac Newton,
infinitesimal calculus is known to humanity. This mathematical formalism is
based on a sequence of infinitesimally small steps so that the progress appears
to be continuous. Any deviation from such continuity is denoted as singular
and the points of “jump” are called singularities. Physicists embraced the
terms critical behavior for a “jump” and critical point for a point where the
“jump” occurs.

The food-seeking tendency cannot battle the fear of potential danger. When

6

...........................2.2. Basic Concepts Of Animal Flocking

Figure 2.2: Transition from a paramagnetic state (a) to a ferromagnetic state
exposed to the external magnetic field (c). Groups of atoms aligned in a joint
direction are depicted as well (b)[Sat20]

birds get spooked, we could say that the inner structure of the flock changes
suddenly. Abrupt (critical) behavior (“jump”) occurs as the flock reaches
a critical point. The inner structure of the whole bird formation changes.
What’s more, the impulse of fear is so severe that all birds align themselves
almost perfectly and attempt to flee in an almost perfectly synchronized
manner. The external field was provided in a form of potential danger, and
it was strong enough to eliminate all the communication noise between birds.
The almost perfectly synchronized flock emerges from seemingly randomly
moving individual elements in a blink of an eye.

2.2.3 Self-organized criticality

Criticality leads to a sudden and united change in direction of the movement
of birds. It was also stated that criticality is reached thanks to an external
impulse. But a flock of birds often achieves this stage on its own. Birds
manage to maintain a compact flock of thousands of individuals that move
in one general direction. At the same time, the flock appears to be partly
morphing and changing its inner structure dynamically. What triggers such
behavior?

Nowadays we can claim that we at least partly understand what is happen-
ing. The answer is cyphered somewhere inside of the term: “Self-organized
criticality” [Sat20].

Imagine pouring fine sand onto a flat surface. Each grain of sand represents
one bird, and the emerging pile of sand will represent the flock. After reaching
a certain critical value, the addition of one more grain of sand will lead to
avalanches sliding down the pile to ensure the future stability of the whole
structure. That can represent a few birds suddenly changing their place
simultaneously inside the flock. It turns out that the number of avalanches
produced depends on their size. The larger the avalanche, the rarer its
appearance. The bigger the number of birds that simultaneously change their
position inside of the flock, the rarer the phenomenon occurs.

Let’s say that at certain points we run out of birds to add to the flock. But

7

2. Getting acquainted with the phenomenon
the flock keeps morphing, nevertheless. How is it possible? If we presume that
the flock continually finds itself “overpopulated”, then every change in the
inner structure is not efficient enough to produce long-term stability and its
result must be another transformation (avalanche) of appropriate magnitude.

2.2.4 Emergent behavior

When observing starlings dance in the sky, it comes to mind that they are
indeed moving as if they constituted a single entity. How does it come that
their movement is so synchronized?

As the flock reaches criticality on its own, something astonishing happens.
Because there is no noise in the communication between neighbors upon
reaching criticality, the alignment is almost perfect. In fact, for our simulation
purposes, let’s assume it is perfect. That has an interesting result. Every
bird is connected to every other bird in the flock through some chain of
individual birds. Because of that, the movement of every two birds in the
same flock is correlated. We speak of complex systems, whenever the intrinsic
simple features (align with your neighbors) give rise to a new, emergent scale
(synchronized movement of a single entity) - E Pluribus Unum (Out of many,
one).

One self-explaining equation that represents the onset of connectivity by
reaching a point of criticality begs to be presented at this point.

G(r, T) = e
−r
ϵ

r
[Sat20]

G(r,T) is a correlation function between two atoms, r is the distance be-
tween two atoms (birds), T is a given temperature (level of noise in the
communication), ϵ is the correlation length that is non-negative and inversely
proportioned to T.

With the temperature (noise in the communication) skyrocketing the
correlation between two atoms is almost non-existent (birds feeding on the
ground). If we increased the temperature to its maximum level, we would
obtain the following result:

lim
T →+∞

= lim
ϵ→0+

e
−r
ϵ

r
= 0

r
= 0 [Sat20]

Let’s see what happens if we decrease the temperature and approach the
Curie point. The following figure implies that two atoms are correlated in
their alignment no matter the distance (two birds in the same flock). Through
correlation, a newly emergent state occurs: The flock moves as a single entity.

lim
T →T c

= lim
ϵ→+∞

e
−r
ϵ

r
= e0

r
= 1

r
[Sat20]

When T approaches the Curie point Tc (paramagnetic to ferromagnetic state)
a point of criticality is reached, ϵ goes to infinity as a correlation function
becomes strictly positive.

8

...........................2.2. Basic Concepts Of Animal Flocking

A basic feature that determines the sudden onset of connectivity inside a
flock of birds was just described.

9

10

Chapter 3
Pre-implementation part

3.1 Real-time vs. pre-computed algorithms

Do I need my behavior simulation to respond to a dynamically changing
environment? If so, then having a precomputed algorithm is too restrictive.
Is the behavior loopable? Consider flies flying around a source of light. It
would be unnecessary to compute such a behavior dynamically when the job
can be done faster and easier by looping some predetermined paths of several
flies. How complex is the behavior required to be and how long must it last?
How many individuals are there in the flock or herd or school of fish?

Despite the benefits of modern hardware that mostly eliminated the memory
shortage and provided us with immense computational power, the question
of whether to choose real-time or precomputed algorithms remains. The right
answer is dependent on all the questions in the previous paragraph and likely
many more. Only through experience, we can determine when to choose
which approach.

In general, pre-computed animations were and still are used in the film
industry. There are two good examples of the original usage of the animal
flocking algorithm to calculate the positions of animals during animation.
The first one is Tim’s Burton Batman Returns (1992), where all positions
of bats flying in flocks were precalculated using Reynold’s Boids algorithm
[Rey87]. The second is the wildebeest stampede scene in Disney’s The Lion
King from 1994, which is regarded as a milestone in the usage of animal
flocking algorithms in the movie industry.

Although the increasing possibilities of today’s hardware open new potential
in real-time behavior algorithm exploration, the precalculated simulations still
have their place both in the film industry and in computer game development.

3.2 Flocking in computer games vs science
simulations

Is it enough if we persuade the user or viewer of the simulation that he is
watching the behavior of an animal? If so, then a believable visual model
combined with some basic behavioral patterns suitable for the animal will

11

3. Pre-implementation part................................
be enough. The human brain classifies what it sees based on the patterns it
already knows. If it looks like a duck, if it behaves like a duck, it is a duck.
For most animals we see in computer games it is enough. If you see a small
furry creature with long ears, jumping through the forest you automatically
assume it is a rabbit. You care not that the rabbit leaves hole “A”, jumps
between the trees for a while, then enters hole “B” and does nothing else.

In contrast, during science simulation, we mainly care about behavioral
patterns, their accuracy, and completeness. The goal is usually to be able to
reproduce scenarios that resemble reality as much as possible and to obtain
usable data during simulation. We have no need to convince anyone, that
the dot during a simulation resembles a fish. We determine that it is a fish
because its behavior will resemble that of a fish (as much as needed for the
purpose of study and data collection). It is simply agreed upon. No additional
visual demands are necessary.

Implementation complexity can differ greatly in both cases. If we are
developing a computer game where your role is to be a shark in the sea that
hunts for other fish, the behavior of the schools of fish must be believable and
detailed as it will be part of the core of the game. If hunting as a shark is
a one-time side quest, a less time-demanding solution for the fish behavior
can be implemented, as this feature is no longer a cornerstone of the game.
Similarly, in the scientific simulation of fish migration, it is not necessary to
implement sophisticated flocking behavior at all. The flock’s resulting route
and how it is affected by water streams are more important than the inner
structure of the flock itself.

12

............................ 3.3. Basic animal flocking algorithms

3.3 Basic animal flocking algorithms

3.3.1 Boids

Developed by Craig Reynolds in 1986, the Boids [Rey87] algorithm remains
the cornerstone of the animal flocking behavior of birds, fish, and many
more. Combining Separation, Cohesion, and Alignment proved to be effective
enough to reproduce believable flocking behavior.

Figure 3.1: Description of basic rules of Boids algorithm [Rey87].

13

3. Pre-implementation part................................
The main idea is based on the existence of neighborhoods. If the neighbor-

hood of inspected boid contains other boids, the alignment and position of
its neighbors are considered during the movement. Also, if any boid comes
too close to another boid a separation force takes place and drives the two
boids further away from each other.

The downside is the default time complexity of the algorithm, which is
O(n2). This inconvenience exists because every boid must scan for every
other boid in the environment during the calculation to determine, whether
the other boid is part of its neighborhood.

Luckily, many augmentations in the form of spatial distribution algorithms
allowed the time complexity to become linear instead. And as we will see
later, if we are willing to approximate the shape of the neighborhood the
lookup of neighbors happens in a constant time.

Later in 1999 C.W. Reynolds extended this approach and added additional
behavioral functionalities, such as pursuit, evasion, obstacle avoidance, wander,
leader following and other behavior patterns [Rey02]. These algorithms
quickly became popular and countless other researchers, built upon Reynold’s
discoveries and solutions.

The basic algorithm itself has its limits though. One of such imperfections
was shown by P. Jonsson and L. Ljungber [PJ17]. There it was demonstrated
that while being suitable for predators hunting flocking prey scenarios, the
Boids algorithm is not suitable for flocking predators hunting flocking prey
scenarios because it took more time for the flocking predators to accomplish
the same results as multiple predators hunting individually.

14

............................ 3.3. Basic animal flocking algorithms

3.3.2 Self-driven particles

The study in 1995 by Vicsek [VCBJ+95] showed an indisputably apparent
relation between the behavior of atoms of iron and self-driven particles.
By introducing uniform noise (that has the same effect on boids as the
temperature has on atoms) and a necessity of the particles to align their
direction with each other, Vicsek successfully reproduced not only the behavior
of atoms of iron but also that of locusts forming a swarm.

Figure 3.2: The phenomenon of a sudden onset of connectivity upon reaching a
critical point when a swarm is created can be observed in this image (transition
from step “b” to step “c”) [VCBJ+95].

15

3. Pre-implementation part................................
3.3.3 Density induced transition in the school of fish

The research led by D.S. Cambuí [DSC12] did not introduce anything new
on top of the Boids model. It only splits the neighborhood of the boid
into three distinct parts (see Figure 3.3). Every part of the neighborhood
was dedicated either to attraction (cohesion), repulsion (separation), or
orientation (alignment). That was the only apparent difference compared to
the Boids model, where alignment and cohesion could be applied in the same
neighborhood).

Figure 3.3: Illustration of the fish neighborhoods used in the research [DSC12].

What is more important was the goal of the study. It aimed to test whether
this model is sufficient to produce the behavior of schools of fish based on
empirical data of schools of fish observed in a water tank. And the answer was:
Yes, it is. Results show that model can reproduce the patterns of movement
observed experimentally for tilapia juveniles.

This produces no insignificant implication. It proves that a model of
interaction as simple as Boids could be used effectively to reproduce general
patterns observed in a large school of fish.

16

............................ 3.3. Basic animal flocking algorithms

Figure 3.4: Formation of the school of fish related to the amount of fish present
(N) [DSC12].

3.3.4 Wolf-like behavior

As mentioned before a significant deficiency in the Boids algorithm was its
unsuitability for flocking predators hunting flocking prey scenario. In the
study of C. Muroa [MESC11] an attempt was made to recreate scenarios of
wolf-like hunting behavior based on two simple laws. It turns out that for
various group hunting scenarios to be successful only these two laws had to
be abided by the objects portraying wolf-like hunting behavior during the
scenario...1. Move towards the prey until a minimum safe distance to the prey is

reached...2. When at a safe distance, move away from the other wolves that are
within the safe area.

This resulted in wolf-like behavior encircling the prey. Some of the more
complex hunting patterns were achieved as well. A good example is the
ambush-like behavior of the pack.

17

3. Pre-implementation part................................

Figure 3.5: Wolf-pack of five individuals hunting a counterclockwise circling prey.
Waiting for ambush behavior is exhibited by the wolf denoted by a pink star.
Black-filled circle: position of the prey at the last time step drawn. Grey-filled
circles: prey trajectory. Colored symbols: wolves’ trajectories. Large circle:
points at a distance from the prey the last time step drawn. (A) The short
approaching phase is followed by the pursuit phase during almost one loop. (B)
Continuation of the pursuit phase during almost another loop. (C) Continuation
of the pursuit until the final encircling phase in which a stationary distribution
is reached: a regular polygon inscribed in the corona C [MESC11].

The question is how well is a wolf-like pattern of hunting and its possible
solution transferable to hunting patterns among fish (as that is where the
original inadequacy of the Boids model was pointed out by P.Jonsson and L.
Ljungber). The answer is: it is transferrable to a certain degree. A yellow
saddle goatfish has a modus operandi reminiscent of wolves and lions [SRB18].
One individual adopts a role of a “pursuer” while his comrades block the
escape routes. Apart from a yellow saddle goat fish sharks, dolphins, seagulls,
or even whales are known to cooperate during the hunt.

The phenomenon of underwater group hunting could be a standalone topic
and other adjustments would probably have to take place to fully accustom
the Boids model to adopt flocking predator behavior. But certain cases of
underwater group hunting are potentially implementable using the two laws
presented by C. Muroa as the hunting pattern of some predator fish resembles
a wolf-like hunting pattern.

18

................................... 3.4. Available assets

3.4 Available assets

Most of the assets available on the Unity store and Unreal Engine Marketplace
implement the features presented in Reynold’s papers, sometimes with slight
changes. I decided to contact the asset developers to provide me insight and
share what differentiates their implementation from other assets in terms
of model behavior and algorithmic complexity of their solution. I sent an
email to sixteen different developers regarding their assets on Unity Store
and Unreal Engine Market Store. The responses that I deemed relevant and
most valuable are summarized in the following paragraphs.

FlockAI [Bey] has eliminated the alignment computation from its behavior
model. The feature remained but instead manifested itself as an emergent
behavior because the boids try to get on top of each other.

The ECS Swarms[Tig] asset takes advantage of Unity’s ECS. With the
help of the Burst compiler[Unia], the vector math operations are speeded
up as SIMD instructions are utilized better. Additionally, this asset takes
advantage of sparse spatial partitioning. This allows the division of the space
into chunks with assigned boids stored in a parallel hash map for faster
neighbor look-up.

Similar functionality is implemented in the Flocks[Kie] asset. A concept
from the GPU particle sim in "Wicked Engine"[tur] was used to perform a
neighbor look-up in a constant time. It is an approximation but works very
efficiently.

The problem of the nearest neighbor calculation could be a standalone
topic. But there is an important aspect in the widely accepted approach
to the neighbor issue, that I find even more interesting. Birds (starlings
specifically) determine their distance based on topology distance, not a metric
one [Sat20]. Metric distance does not affect the number of neighbors at all.
The only thing that affects the number of perceived neighbors is starling’s
perception limitations. That is how far a bird can see and the fact, that a
starling can count to number seven. Not more. This quite recent discovery
reveals the misconception of the predetermined area around the bird that
serves as its neighborhood.

A topological model, such as Voronoi space partitioning should be consid-
ered to determine boids neighbors.

19

3. Pre-implementation part................................
3.5 Suitable space partitioning structures

3.5.1 Voronoi neighborhoods

One of the most attractive features of the Voronoi diagram is that the average
number of neighbors of one element is six (approximately the same number
as of the starling’s neighbors in the flock).

.
Figure 3.6: Voronoi diagram is constructed based on the following idea. Define
the neighborhood of a given particle as all those points of the plane closer to it
than to any other particle[Sat20]

This model is scale-invariant, topological, and computationally achievable
in higher dimensions. It is already used in computer graphics (Voronoi
Shattering[Jos], modeling of terrain or other objects given a point cloud,
determining meshes for space–discretized solvers) and Voronoi neighborhoods
were already proven to be an efficient tool when used in Particle swarm
optimization [SGAM09]. What’s more, Voronoi neighborhoods seem to be an
intrinsic part of the world. Our heart cells are organized in such a manner.
Studies suggest that there are some galactic poles where galaxies are clustered
in these poles due to gravity. These clusters form a structure that is like the
Voronoi diagram.

20

.......................... 3.5. Suitable space partitioning structures

Although the Voronoi diagram approach seems very promising, I have
found no evidence of such implementation of neighborhoods in the flocking
models. The reason might be that discoveries that lead to such an approach
are quite novel.

21

3. Pre-implementation part................................
3.5.2 K-D Tree

This is a special case of binary space partitioning tree, where every non-leaf
node can be thought of as implicitly generating a splitting hyperplane that
divides the space into two parts. The detailed understanding of how this data
structure functions is not the focus of this, work but can be studied on many
free internet sites[tan].

Imagine a scenario with multiple feeding grounds and a fish randomly
positioned in the space. We have multiple static positions that present
potential destinations. If the fish had to determine the closest place to go
to, it would have to list all the possible feeding grounds. But if the positions
of the feeding grounds were stored in a K-D tree all we would need to do
is perform a nearest neighbor search operation that has a logarithmic time
complexity in most cases (linear in the worst case).

Figure 3.7: Distribution of points in 2D space[Wika].

Figure 3.8: K-D tree visualization[Wika]

22

.......................... 3.5. Suitable space partitioning structures

3.5.3 Cube space partition map

A commonly used approach is to divide the area the simulation takes place
into cube-shaped chunks. This can be achieved by an integer division of the
coordinates the boids are located in. The result of such a division could
be then used as a key in a hash map collection where the values would
present information about the boids located in the chunk. When a boid
needs to locate its neighbors it first calculates a key using the integer division
of its world space coordinates. Then it uses the obtained value as a key
to access the relevant chunks in the hash map and extracts information
(other boid’s location, orientation, speed, etc.). This process can be also
effectively parallelized. Unity has a built-in native collection that enables
such a functionality[Unic].

Figure 3.9: Cube Space Partition Map that illustrates the space division into
cube chunks with associated data stored in each chunk[Arc].

23

24

Chapter 4
Implementation

It is appropriate to list a few key functionalities implemented in my solution
of the flocking algorithm with the ECS approach. There are a lot of small
tweaks that boost the believability of the simulation but for the sake of clarity,
I decided to list the most important parts of the implementation.

For the creation of the scene, an asset POLYGON - Nature Biomes - Season
One[Sto] with a collection of biomes was used from the Synty store.

4.1 Functionalities

4.1.1 Obstacle Avoidance

Obstacle avoidance is calculated with simplicity and predictive behavior in
mind. A boid casts a sphere in the forward direction. If there is a hit with
an obstacle collider the reflection vector[Unie] based on the surface normal of
the hit point is calculated and projected on the plane defined by the boid’s
forward vector (used as a plane’s normal vector). The terrain collider has
been successfully transformed into the ECS world. Therefore, the terrain is
treated as a static obstacle as well. The solution works if three conditions
are met...1. All the obstacles have convex colliders...2. The minimal distance between all the obstacles is big enough for the

boid to fit through...3. There are no blind alleys.

25

4. Implementation....................................

Figure 4.1: The black line describes the direction from the boid’s center to the
hit point with the obstacle’s collider. The blue and the red lines describe the
horizontal and vertical axis of the projection plane respectively. The yellow line
represents the resulting obstacle avoidance vector. [author]

4.1.2 Boids flocking behavior

When it comes to boids behavior, I implemented the well-known Reynold’s
forces that determine the boid’s desired direction of movement. I purposefully
omitted the alignment force, as all the boids always intrinsically aim for a
destination point (whether it is a feeding or spawning ground or another boid
in case of a predator). I divided boids in my scene into two categories: the prey
and the predator. Both these categories have slightly randomized movement
abilities between each other to provide a non-uniform visual experience. Both
prey and predator also avoid statically defined obstacles.

It should be noted that my implementation allows for multiple types of prey
to be present. But rather than having two types of prey that would exhibit the
flocking behavior to merely fulfill the requirements of the guidelines for this
thesis, I decided to opt for the solution with one type of prey and predators
chasing it. This allowed me to fine-tune the escape-like behavior of prey and
the pursuit logic of predators. This decision was consulted and approved by
the supervisor of my thesis.

The prey actively flocks with other prey using Reynold’s cohesion property
and maintains defined separation that changes when a predator approaches
its vicinity. The predator avoidance vector has two forms. The first one
is simple avoidance using a reversed direction vector from the prey toward
the predator. The second is triggered when the predator approaches the

26

.................................... 4.1. Functionalities

prey more closely and results in an escape-like behavior of the prey[autb].
The predator chooses its hunt target based on its movement ability defined
by rotation and movement speed. It will never choose prey that exhibits a
high potential to escape during the hunt. This way I partly mimicked the
behavior in nature, where predators choose the ill and weak-looking prey.
The predator’s flocking abilities also differ from the behavior of the prey. It
is more concentrated on the selection of suitable prey and its pursuit. The
predator’s interaction with other predators is limited to separation calculation
to decrease the number of collisions.

An additional problem had to be solved. A necessity for priority man-
agement of direction vectors had to be applied. I also aimed to implement
the priority structure in a way that would allow each direction vector to be
taken into consideration proportionately to its deviation from the vector that
preceded it in the hierarchy. In specific scenarios, it proved to be efficient to
ignore the predefined way of vector addition. Therefore, an option to ignore
the cosinus-based calculation is provided in the function as well.

Figure 4.2: The “leadingVector” reference is a destination vector computed so
far. The “newVector” parameter is the next direction vector in the hierarchy to
be added to the resultant vector. Note that with an increasing angle between the
“leadingVector” and “newVector” the "power" value approaches zero. [author]

27

4. Implementation....................................
4.1.3 Other optimizations

When faced with a decision whether to take advantage of Unity’s physics
I almost always tried to look for an alternative that used approximated
values. All the flocking and predator-prey pursuit logic is implemented this
way. The only cases when I used Unity’s built-in Physics system[Unid] were
when determining obstacle avoidance and collisions with feeding or spawning
grounds as there were relatively few of them (in comparison with the number
of boids). And even the obstacles and feeding grounds have simplified colliders
most often in the shape of a sphere or a capsule.

From a computational point of view, the main bottleneck was the deter-
mination of the neighbors of each boid. I used a space partition approach
that divides space into cube-shaped chunks and assigns position and other
relevant information of the boids to these chunks. The boid that resolves
its neighbors then finds the chunk it is in plus the surrounding chunks and
extracts the necessary data. I used plenty of the native containers provided
by Unity. The space partition maps were implemented with parallel execution
when writing and reading from the map using Unity’s Job system. I also
developed a simple yet efficient means how to define a volume in which to
spawn points that served as feeding or spawning grounds pseudo-randomly.
The position and scale of these grounds can be freely modified from Unity’s
editor interface.

4.2 Entities, Components and Systems terminology

4.2.1 Basics

The OOP approach is usually more understandable for human readers as
it respects the way humans tend to perceive objects in the real world. Be-
cause of this, the written code is usually less error-prone compared to other
programming approaches. As it could be expected the newly created object
is stored on the heap part of the memory with a reference to the object
being stored on the stack. While it might be the most human-friendly way
of representing complex data and operations related to them, it is not the
fastest approach. The heap has much more complex bookkeeping involved in
an allocation, freeing of the memory, or accessing the necessary data, and
this can become a bottleneck when dealing with large amounts of data that
needs to be processed.

28

......................4.2. Entities, Components and Systems terminology

Entity Component System is a part of Unity’s Data-Oriented Technology
Stack (Dots) approach that leverages performance over human readability
by using stack allocations. While the concept might be more difficult for
humans to fully understand and efficiently use (and is more error-prone than
the OOP approach) it allows the computer to access required data fast. It
also puts the memory allocation in the hands of the programmer (instead
of relying on the garbage collector) once again. The core concept revolves
around dividing the object into three main parts: Entity, Component, and
Systems. For simplification purposes, I will compare each part of the ECS
approach to its relevant OOP counterpart. This comparison should be viewed
as purely conceptual rather than factual.

An Entity does not contain any code nor serves as a container for associated
data. It is just an ID that associates unique Components together. In the
OOP approach, the counterpart could be the reference to the object.

A Component serves as storage for unmanaged data that are related to
a certain Entity. The closest counterpart could be an attribute of a class
instance in the OOP approach.

A System provides a logic that transforms the Component’s data from
its current state to another. It contains the necessary logic that is used to
modify the data stored in the Components. You can further define depen-
dencies between Systems and schedule their order of execution. An ECS
programmer will most often rely on Unity’s Job system as well to further
increase performance by allowing parallel execution of operations. A relevant
comparison to ECS’s System could be a class instance method in the OOP
approach. Because in the ECS world, most of the data is unmanaged it
should be mentioned that my project took advantage of the Burst compiler
(a compiler that can compile a subset of C# into optimized native code).

29

4. Implementation....................................
4.2.2 Aspects and Authoring scripts

Two more constructs should be mentioned: an Aspect and an Authoring script.
An Aspect is an object-like wrapper that you can use to group together a
subset of an Entity’s Components into a single C# struct. Furthermore,
you can implement certain methods inside of an Aspect that operate on the
Component’s data. These methods can later be called in a System. This
allows better code distribution inside of the project and at least partly puts
Component’s data and procedures that transform them “closer” together.

An Authoring script serves as a baker. It essentially allows you to define
the transformation of an object to its ECS counterpart. You can add, remove
or set the Components that need to be present in the resulting Entity during
the baking process.

4.2.3 Terminology Sum-up

There is much more terminology regarding ECS’s functionality, especially
when we start talking about memory management of the Components or the
Entity Command Buffers that need to be loaded with changes that are to be
performed on the Component’s data. As this is not the main topic of this
work and ECS was used merely as a means to achieve better performance
rather than a subject of a close investigation I will refer to the official Unity
sites for readers willing to expand their knowledge base[Unib].

4.3 Dealing with the new technology and an
error-prone code

It is very easy to make a mistake while programming. It might be even harder
to fix the error when using ECS, especially when taking advantage of the
Burst compiler as it has limited error-handling support. There are a few
guidelines that helped me a lot during the debugging process.

4.3.1 Decomposition of the operations

The most useful one by far was to keep the Aspect’s methods as simple as pos-
sible and divide the operations inside of the Systems into single functionality-
focused jobs. When an undefined behavior occurred or a memory allocation
error with an unidentified origin happened in one of the Burst compiled jobs
it proved to be extremely useful to have the project logic decomposed into
as simple actions as possible. This well-known technique of decomposition
in programming became paramount when debugging and putting certain
functionalities together.

30

................. 4.3. Dealing with the new technology and an error-prone code

4.3.2 File management

One significant downside to the ECS approach is that it takes more files to
define a single operation. First, the Components of an Entity need to be
defined. Then you create an Authoring script that is attached to the object
that will be transformed into its ECS’s counterpart. It is convenient to create
an Aspect that encapsulates relevant Components of an Entity and create
methods that transform the Component’s data. At last, a System needs to
be written to fully enable the transformation of the Entity’s Component data.
This results in the creation of at least four separate files. All this could be
written in one script using the OOP approach.

When dealing with multiple Entities, each one having its own Components,
Aspects, Authoring scripts, and Systems, it can get chaotic. A straightforward
approach places all Components in one folder and each System into another,
etc. This quickly led to a problematic lookup of the necessary file in the
project. Instead, I chose a file management approach that distinguishes each
Entity that has its own Components, etc. stored in its own folder hierarchy.
This solved the problem in most cases. Sometimes certain Systems had to
operate on multiple Components related to different Entities. These Entities
had to be packed in a folder with a shared Systems folder that contained the
previously mentioned System. This solution proved to be the most efficient
way of maintaining readability and relatively easy lookup of the project’s
files.

4.3.3 Actively search for help

The ECS in Unity is still a new technology. It only became available in
version 1.0 in December of 2022. The documentation exists, but certain
detailed descriptions might still be missing to this date. I often ran into a
problem that did not have a prescribed way of solution on the official pages.
When this happened, the Unity Forum proved to be very useful.

For instance, I managed to get counsel[Avo] on how to effectively transform
the terrain collider into the ECS world there. To this date (5.5.2023) the
official support for terrain-related operations is not present in Unity ECS. That
can be said for skinned animations as well. For the purpose of demonstration,
I created a few models of fish and animated them using Maya software[auta].
Sadly, there is no tool yet for using this type of animation in Unity ECS. A
workaround exists though. It should be possible to divide the models into
separate pieces and “manually” move these separate parts as to mimic the
effect of the animation of the fish. Unfortunately, this was out of the scope
of the allotted time I had to finish a project demo. Still, it might present at
least a temporary solution for the missing animation functionality.

31

4. Implementation....................................
4.4 Interactive screen options

Rather than exploring how the simulation could be interacted with (which
poses no real boundaries on the imagination but may be hard to carry out
in a real-life environment), I decided to contemplate the topic with regard
to the limitations the interaction must meet. Two main limitations should
be taken into account. The choice of the interaction environment and the
capability of the user to perform such an interaction (as they are very young
children).

4.4.1 Multiple-touch screen tap-like interaction

Let’s consider a big tap screen with a simulation running on it. The big touch
screen would be no match for projection in terms of the possible size of the
final image during simulation. And even with a suitably large touch screen
available, it might be hard for people to interact with by tapping on it. It
would have to be placed at the level of the ground. And even then it might
be unusable by some children that are too short to reach every corner of it.
Because of these reasons, the big multiple-touch screen option is not suitable
for such a simulation.

Considering most straight-forward solutions a mouse-based interaction
comes to mind as well. A mouse could be present on a stool in front of the
projection screen connected to the computer that calculates the simulation.
A projection with a separate tablet on the stool that serves as an interaction
medium is a variation of the multi-tap touchscreen option. It removes the
limitation of the projection screen position and size and makes the environment
reachable to anyone regardless of their height. Alternatively, a notebook with
a touch screen and substantial performance abilities would also be an option.

4.4.2 Speech recognition interaction

There is plenty of software that provides the necessary functionalities. There
is even a Unity plug-in for the Cognitive Speech services SDK[Mic]. An envi-
ronment controlled by a selected few phrases is relatively easily implementable.
To this day a lot of the most spread languages can be incorporated, especially
if the command is a simple phrase or even a word and not necessarily a whole
sentence.

One of the possible problems is that some children might not be able to
pronounce the word or phrase correctly. Others might not be able to talk at
all but could interact with the simulation if some other way of interaction
was available. Despite all, sound recognition could prove to be an interesting
feature while not being the primary way of interaction. But imagine a class
full of children visiting such an installation. Children tend to express their
feelings and emotions with sounds and various vocal expressions, and it might
be hard to discipline them to do even simple tasks. The resulting tumult
might prove to be too much of a noise for successful voice recognition to take

32

............................... 4.4. Interactive screen options

place. For this reason, a speech-based interaction is not an optimal option
for this installation.

4.4.3 Motion-capture based interaction

An interactive projection wall that captures certain gestures mapped to
functionalities like spawning, repulsion, or attraction could prove very effective.
It would be a sufficient substitute for a tap-like interaction and does not
suffer from the tumult limitations as the speech recognition-based interaction.
Even a very young child would be able to interact with the simulation by
just moving around. By coincidence, a Projection interactive wall is being
developed on CTU FEE[CF]. The downsides and complications that are
connected with this option are discussed in the sections 4.4.7 and 4.5.2.

4.4.4 Remote phone interaction

Another possibility relies on people being able to connect to the Unity project
through a mobile app. A simple command could be sent using their mobile
phones. They could spawn boids or even force a temporary tap-like interaction
on predefined areas of the screen through buttons. These actions could be
then stored in a buffer and executed sequentially. The networking interface is
also present in both the standard Unity projects and the still experimental
ECS approach. Another plus is that if some unexpected problems occurred
during the implementation of networking in ECS all the functionalities could
be implemented with a standard object approach and then communicated
to the ECS world separately inside of the project. It also enables dozens
of people being able to interact with the simulation at the same time and
removes the necessary constraints on screen size or position and removes the
limitations posed by speech recognition interaction. Even very young children
can tap on designated parts of the phone screen these days.

The downside relies on the detachment of the user from the simulation by
using the phone as a mediator. I would like to provide a sensation of imminent
power when the user controls the simulation directly (motion-capture, speech
recognition, tap screen). Such a feeling would be hard to achieve if the user
needed a mediator to control the situation.

4.4.5 Holographic projection

Nowadays it is possible to emulate a 3D visual experience with a projec-
tion. With the use of a projector placed at the ceiling and projecting the
simulation vertically in a direction to the floor with a special folie placed
(in the projection space) at a certain angle, the simulation could appear
extremely immersive[Dis]. A motion-capture could enable the simulation to
take the user’s distance from the stage into consideration. If these features
were combined the boids could react to the proximity of the viewers. This
sounds both ambitious and technically challenging.

33

4. Implementation....................................
4.4.6 User interaction limitations

Another limitation to be considered is the time required to perform an
interaction. Because the simulation should be presented in the museum or
gallery the obvious requirement is that the user spends dozens of seconds or a
few minutes at most when completing certain interaction acts and then moves
to the next exhibit. Simple immediate effect-like actions are the obvious
choice that meets the time requirement constraint.

When deciding what other interaction options I could implement, I had to
take several other factors in mind. The main users of this application are chil-
dren of elementary school age or even younger. This means the functionalities
need to be easily comprehended, and intuitive and their execution must be in
correspondence with the user’s mental capacity and cognitive abilities. My
first design drafts included minigames that consisted of simple fish-catching
routines that led to the revelation of information about the types of fish
caught. The problem is that a lot of users are unable to read. Some children
who could use this application might not even be able to speak properly
because of their young age and even if they could, they might speak different
languages. This resulted in a decision to implement straightforward inter-
action options. A simple tap on the interactive screen or a user’s proximity
could cause the boids to be either attracted or repulsed by the user’s action.
That leads to a noticeable visual change in the behavior of the boids as well
as prompts the curiosity of a child and encourages it to interact with the
environment. Another option originally involved the ability to somehow force
the boids to form a pattern designed by the child’s drawing ability. A similar
effect was achieved by deleting the boids in the area of a tap. Drawing on the
screen then caused boids to create a plane-like palette where the drawn shape
was made visible by the deleted boids in the scene rather than the existing
boids forming the desired pattern.

4.4.7 Chosen Interaction option

It must be noted that I had to take into consideration the fact that even
though my demo scene was ready to be tested by the beginning of April 2023
there were issues related to the building of the application. Even though
the build was successful the application could not be launched properly. An
internal bug during the building process prevented the app from recognizing
a subscene where the ECS implementation exists and any attempt to launch
the simulation outside of the Unity editor ended with a crash. The issue
was connected to the ID of the sub-scene which was not loaded correctly
during the build. I attempted to fix the issue by inspecting both the build
log files and the app crash log files. Unfortunately, as the build proceeded
successfully and the problem was reported only after the attempt to launch
the application, the debugging process proved to be excruciatingly painful. It
was by no means obvious how I could resolve the issue. Unity forum proved
to be of no help as well. There was no other option than to report the bug
and hope that Unity developers fix the issue in some following release of the

34

....................................... 4.5. Testing

Unity editor. The reason I am stating the issue at this point is that it severely
affected my choice of options regarding the interaction possibilities. I was
only able to launch the simulation in the Unity editor, nowhere else.

By the end of April, a version of Unity editor 2022.2.16f appeared to fix the
issue with the incorrect sub-scene ID assignment and allowed for a successful
launch of the application after the build. At this point, I was given the
option to consider both the implementation and testing of interaction options.
Thanks to my supervisor I was able to gain access to the Projection interaction
wall developed on CTU. After including the necessary package, calibration
of the scene’s cameras, and other tweaks in the project, the simulation was
successfully executed on the wall.

At the moment I was given access to the Projection Interaction wall (May
2023) it provided these functionalities: recognition of positions of both left
and right hands and recognition of the following gestures: swipe up, down,
right, and left (done with hands). Of these functionalities, the one that were
the most reliable was the recognition of the hand’s position. It was stated
several times by Ing. Ondřej Slabý that gesture recognition needs to be made
more robust and reliable. Because of this I mainly took advantage of the hand
position recognition. The position of the right hand was mapped to the screen
space of the simulation and a starting point for a sphere cast was inferred
from it. Upon collision with the boids in the simulation either the attraction
or repulsion force was to be applied to the boids. I also attempted to map the
gestures to the spawning of the boids in the scene and considered mapping
certain gestures to swap between the attraction and repulsion modes.

4.5 Testing

4.5.1 OOP and ECS approach comparison

When comparing the performance between the standard object and ECS
approach I created four scenarios. Two with the classic OOP approach in
mind and two that took advantage of the ECS approach. Apart from the
boids, the scene was empty as the main purpose was to benchmark the
performance with various implementations of the flocking algorithm. All
benchmark tests were carried out on my notebook with the latest drives
installed (updated on the 13th of May 2023). The device is further specified
in the table 4.1.

CPU Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz 2.50 GHz
Graphics card Nvidia GeForce RTX 3060 Laptop GPU

RAM 16GB
System Type 64-bit operating system, x64-based processor

Windows edition Windows 11 Home

Table 4.1: Testing device specifications.

35

4. Implementation....................................
The first option used a standard object approach with physics colliders

set as triggers and standard object containers used to keep track of current
neighbor boids. The second option used a space partition map (implemented
with the OOP approach) for neighbor detection instead of relying on colliders.
In both cases, the number of boids taken into consideration was limited to
eight.

The third and the fourth scenarios took advantage of the ECS approach
with a space partition map for neighbors to look up and Unity’s native
collections as containers to keep track of current neighbors. Operations on
these collections were often done in parallel when the game logic allowed
such a possibility. The third option had the number of boids taken into
consideration as neighbors set to eight. The fourth scenario further increased
the number of neighbors to thirty-two. The simulation was able to process
the same logic with a significant increase in performance.

All of the benchmark results are present in the table 4.2.

36

....................................... 4.5. Testing

Benchmark: Objects with colliders with 8 maximum neighbors.

Sum(Boids) 0 100 200 300 400 500 600
Avg(FPS) ∼ 397 ∼ 380 ∼ 272 ∼ 200 ∼ 132 ∼ 95 ∼ 56

Sum(Boids) 700 800 900 1000 1300 - -
Avg(FPS) ∼ 31 ∼ 20 ∼ 10 ∼ 8 ∼ 4 - -

Benchmark: Objects with space map with 8 maximum neighbors.

Sum(Boids) 0 100 200 300 400 500 600
Avg(FPS) ∼ 397 ∼ 360 ∼ 251 ∼ 180 ∼ 125 ∼ 93 ∼ 68

Sum(Boids) 700 800 900 1000 1300 - -
Avg(FPS) ∼ 46 ∼ 37 ∼ 26 ∼ 20 ∼ 8 - -

Benchmark: ECS with space map with 8 maximum neighbors.

Sum(Boids) 0 1000 2000 4000 6000 8000 10000
Avg(FPS) ∼ 388 ∼ 385 ∼ 324 ∼ 237 ∼ 153 ∼ 89 ∼ 57

Sum(Boids) 12000 14000 16000 20000 - - -
Avg(FPS) ∼ 26 ∼ 24 ∼ 15 ∼ 3 - - -

Benchmark: ECS with space map with 32 maximum neighbors.

Sum(Boids) 0 1000 2000 4000 6000 8000 10000
Avg(FPS) ∼ 383 ∼ 382 ∼ 293 ∼ 215 ∼ 133 ∼ 82 ∼ 54

Sum(Boids) 12000 14000 16000 20000 - - -
Avg(FPS) ∼ 33 ∼ 24 ∼ 15 ∼ 4 - - -

Table 4.2: Performance benchmark for OOP and ECS implementation of my
flocking algorithm. "Sum(Boids)" named row of cells refers to the overall sum of
all boids in the scene. "Avg(FPS)" named row of cells refers to the average FPS
for the sum of boids. The FPS is calculated as a sum of frames from the time
span of ten seconds divided by ten. Cyan columns refer to test cases with one
thousand boids for direct comparison purposes between benchmarking scenarios.
The green columns mark the last case within each scenario where the sum of
boids had the respective average FPS greater than thirty.

37

4. Implementation....................................

0 5000 10000 15000 20000

0
10

0
20

0
30

0
40

0

Number of Boids

F
ra

m
es

 p
er

 S
ec

on
d

OBJ coll 8
OBJ map 8
ECS map 8
ECS map 32

Figure 4.3: Graphic visualisation of table 4.2. "Obj coll 8" refers to the scenario
with OOP approach with colliders and eight neighbors, "Obj map 8" refers to
the scenario with OOP approach with space partition map and eight neighbors,
"ECS map 8" refers to the scenario with ECS approach with space partition
map and eight neighbors, and "ECS map 32" refers to the scenario with ECS
approach with space partition map and thirty-two neighbors.[author]

After I finished the scene and launched the ECS simulation with thirty-
two maximum neighbors per boid with all visual and post-processing effects
the frame rate dropped to approximately thirty frames per second (with
ten thousand actively flocking boids). I consider this performance to be
acceptable for user testing purposes and therefore I chose it as the default
maximum number of boids in the scene.

38

....................................... 4.5. Testing

4.5.2 User testing

Results of the testing can be inspected in this video[autc]. If not stated
otherwise I always refer to this video in the following paragraphs.

The mapping of the hand’s position and inferring the start point to cast
the sphere (which caused the boids to be either attracted or repulsed by it)
proved to be working reliably. The mapping of gestures to spawn events
was tested as well. As it is apparent from the video it worked in most cases.
Unfortunately, as the gesture and position of the same hand were considered
in this particular case, sometimes the gesture event was triggered when the
hand was moved to change the sphere cast location even if the user did not
intend to do the "boids spawn" gesture. In other cases, the gesture was not
recognized. Because of this, I decided to provide the user with an alternative
way for spawning boids by mapping this functionality to some keyboard keys.
The ability to switch between repulsion and attraction modes was done using
the keyboard as well.

It can be said that children learned the basic interaction rules fast. After
a few minutes of explanation of the simulation and a showcase of how to
interact with it, they had no problem reproducing the interaction. When
they were uncertain they talked to each other and advised their comrades
on how to interact with the wall. This behavior is captured in the video as
well. They found the attraction effect especially intriguing as it produced a
whirlpool-like effect. The kids often stared at it for dozens of seconds without
doing anything else. They just held their arm up and observed it. When I
asked them about it, they said they enjoyed the feeling of controlling the fish
and that was enough for them. It is interesting how fulfilling such a feeling
of control is to humans. I myself enjoyed it as well during the early stages of
simulation testing. Another interesting moment was when the barracuda fish
model (that represented the predator) was spawned and the attraction force
took place. Because the fish was spawned in the proximity of the camera
it was affected by the effect very soon and the fish was basically unable to
escape it. All the kids that stumbled upon this situation spent sometimes
minutes just controlling the barracuda fish and forcing it to move in circles.
While it produced an interesting moment, it should be noted that the start of
the sphere cast should be moved further away from the camera into the scene
with the effect being cut off after reaching a specified minimum distance from
the sphere cast start point. This way the fish affected by the attraction effect
in close proximity to the camera can be given a chance to eventually escape
it.

When I asked the kids what it is they liked about the experience they
almost always mentioned the attraction effect and especially the moments
when they controlled the barracuda fish movement in close proximity from the
camera position. Some of the girls said they felt scared when the barracuda
appeared and hugged each other, but later found the fish funny and wanted
to control it. Among their suggestion was richer underwater wildlife. They
wanted to see octopuses, whales, and sharks. They also wanted the famous
tv character SpongeBob[Wikb] in the scene alongside its companion Patrick.

39

4. Implementation....................................
Adults seemed to be more experimental, especially at the beginning of

the interaction. While the interaction was primarily designed for children, it
seemed that adults enjoyed the effects and the overall experience as well. I
have been told a few times that the simulation is a "zen-based interaction".
They found the results of it calming and relaxing. Some said they could
imagine playing with it when waiting for their turn at the dentist. Others
said they would expect this simulation at some underwater aquarium gallery.

40

Chapter 5
Conclusion

Understanding basic concepts like self-induced criticality and emergent be-
havior helped me to adopt a certain type of philosophical approach during
the implementation that had to be compatible with the ECS coding limita-
tions and requirements. Correct execution of the Systems as well as setting
appropriate job dependencies were taken care of.

Exploration of available solutions in the Unity asset store and Unreal
marketplace provided the necessary inspiration and served as a basic imple-
mentation solution to compare to animal flocking behavior observed in nature.
It was concluded that the main difference is the metric-based determination
of neighbors used in the simulation (starlings use a topology-based distance).
Fortunately, it was proven [DSC12] that at least in the case of fish this
approach produces results almost identical to those observable in nature.

When it came to deciding on the interactive screen solution the Projection
interactive wall developed at CTU FEE was chosen as it was both a convenient
choice suitable for children and also probably the only one (apart from click-
based mouse interaction) that was feasible given the time limitations caused
by the internal Unity bug (section 4.4.7).

A prey and a predator are two types of fish that exhibit different flocking
abilities in my work. The reason why predators’ flocking abilities are limited
is stated in section 4.1.2. The Moorish Idol and Great Barracuda models
were created for the presentation of these types respectively. Their final scale
was adjusted for better visibility on the projection wall.

When comparing the difference between the OOP approach with colliders
and space partition map it is apparent that before the space map could be
taken advantage of, the object implementation itself became the bottleneck
of the performance.

With the ECS approach the boost in performance is apparent as the
simulation was able to process tens of thousands of boids instead of hundreds
(when using the OOP approach with space partition map). The ECS concept
opens new possibilities for the maximum number of particles in real-time
simulations. A simulation with such a high number of real-time computed
particles would be unthinkable on mid-price ranged devices (like my notebook)
before.

The ECS Swarms[Tig] asset provided implementation that enables tens

41

5. Conclusion......................................
of thousand boids. It should be noted that while the asset provides similar
functionalities it lacks many of the optimization tweaks that enable the
predator-prey pursuit scenario in my implementation. I have also separated
several functionalities into different Systems for code clarity purposes. Because
of these tweaks and code separation, multiple creations of the same space
partition map had to be performed. Therefore, the performance is slightly
decreased compared to the ECS Swarms asset.

The main purpose of the testing was to compare the performance of the
ECS and the OOP approach. This test was successfully carried out on
my device after the internal Unity bug (section 4.4.7) was fixed and the
application could be launched after it was built. Because of the relatively
small time window before the work had to be submitted (once the internal
bug was finally fixed), I decided to dedicate the available time I was given to
access the Projection interaction wall for user testing purposes rather than to
perform a similar benchmark test on the wall. As can be seen from the video
the simulation runs smoothly on the wall with the maximum sum of boids in
the scene limited to ten thousand.

The user testing proved that both children and adults are interested
in interacting with this type of simulation. When gesture recognition of
the Projection interaction wall will be made more robust, the spawn and
attraction-repulsion switch actions could be mapped on the gestures. This way
the keyboard can be omitted from the interaction completely. The simulation
appeared to run very smoothly on the interaction wall with twenty thousand
actively flocking boids. Therefore it is possible to make the simulation more
complex and larger in scale if needed. Because the logic of the simulation is
separated from the user interaction logic it is possible to map the behavior to
different events if needed in the future.

42

Appendix A
Bibliography

[Arc] ArcGis, Cube space partition map image,
https://desktop.arcgis.com/en/arcmap/latest/
tools/space-time-pattern-mining-toolbox/
create-space-time-cube.htm, Acceessed on 8 May 2023.

[auta] author, Fish animation done in maya, https://youtu.be/
pRMZgJtLguo, Acceessed on 20 May 2023.

[autb] , Prey pursuit demo, https://youtu.be/xLTxIfJ1LG4,
Acceessed on 12 May 2023.

[autc] , Simulation testing, https://www.youtube.com/watch?
v=tbQAXZH75Qk, Acceessed on 20 May 2023.

[Avo] Avol, Ecs terrain transformation, https://forum.unity.
com/threads/using-unity-terrain-with-dots-workflow.
755105/page-2, Acceessed on 14 May 2023.

[Bey] BeyondVR, Flockai, https://assetstore.unity.com/
packages/tools/ai/flockai-227995, Acceessed on 13
January 2023.

[CF] CVUT-Fel, Interactive projection wall, https://github.com/
iimcz/ipw-firmware, Acceessed on 12 May 2023.

[Dis] Glimm Display, Holographic projection, https://www.youtube.
com/watch?v=r27wrQOgawo, Acceessed on 12 May 2023.

[DSC12] Alexandre Rosas Dorílson Silva Cambuí, Density induced transi-
tion in a school of fish, Physica A: Statistical Mechanics and its
Applications 391 (2012), no. 15, 3908–3914.

[Jos] Jose, Voronoi shattering (part i), https://www.joesfer.com/
?p=60, Acceessed on 13 January 2023.

[Kie] Justin Kiesskalt, Flocks, https://www.unrealengine.com/
marketplace/en-US/product/flocks, Acceessed on 13 January
2023.

43

https://desktop.arcgis.com/en/arcmap/latest/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/space-time-pattern-mining-toolbox/create-space-time-cube.htm
https://youtu.be/pRMZgJtLguo
https://youtu.be/pRMZgJtLguo
https://youtu.be/xLTxIfJ1LG4
https://www.youtube.com/watch?v=tbQAXZH75Qk
https://www.youtube.com/watch?v=tbQAXZH75Qk
https://forum.unity.com/threads/using-unity-terrain-with-dots-workflow.755105/page-2
https://forum.unity.com/threads/using-unity-terrain-with-dots-workflow.755105/page-2
https://forum.unity.com/threads/using-unity-terrain-with-dots-workflow.755105/page-2
https://assetstore.unity.com/packages/tools/ai/flockai-227995
https://assetstore.unity.com/packages/tools/ai/flockai-227995
https://github.com/iimcz/ipw-firmware
https://github.com/iimcz/ipw-firmware
https://www.youtube.com/watch?v=r27wrQOgawo
https://www.youtube.com/watch?v=r27wrQOgawo
https://www.joesfer.com/?p=60
https://www.joesfer.com/?p=60
https://www.unrealengine.com/marketplace/en-US/product/flocks
https://www.unrealengine.com/marketplace/en-US/product/flocks

A. Bibliography.....................................
[MESC11] C. Muro, R. Escobedo, L. Spector, and R.P. Coppinger, Wolf-

pack (canis lupus) hunting strategies emerge from simple rules
in computational simulations, Behavioural Processes 88 (2011),
no. 3, 192–197.

[Mic] Microsoft, Cognitive speech services sdk, https://github.com/
Azure-Samples/cognitive-services-speech-sdk/blob/
master/quickstart/csharp/unity/text-to-speech/README.
md, Acceessed on 12 May 2023.

[PJ17] L. Ljungberg P. Jonsson, Flocking as a hunting mechanic: Preda-
tor vs prey simulations, Ph.D. thesis, KTH ROYAL INSTITUTE
OF TECHNOLOGY, 2017.

[Rey87] Craig W. Reynolds, Flocks, herds and schools: A distributed
behavioral model, SIGGRAPH Comput. Graph. 21 (1987), no. 4,
25–34.

[Rey02] Craig Reynolds, Steering behaviors for autonomous characters,
763–782.

[Sat20] Helmut Satz, The rules of the flock, Oxford University Press,
2020.

[SGAM09] Ehsan Safavieh, Amin Gheibi, Mohammadreza Abolghasemi,
and Ali Mohades, Particle swarm optimization with voronoi
neighborhood, 2009 14th International CSI Computer Conference,
2009, pp. 397–402.

[SRB18] Marc R. Steinegger, Dominique G. Roche, and Redouan Bshary,
Simple decision rules underlie collaborative hunting in yellow
saddle goatfish.

[Sto] Synty Store, Polygon - nature bioms, https://syntystore.
com/products/polygon-nature-biomes-season-one?_pos=
4&_sid=d811435c1&_ss=r, Acceessed on 12 May 2023.

[tan] tanvibugdani, Search and insertion in k dimen-
sional tree, https://www.geeksforgeeks.org/
search-and-insertion-in-k-dimensional-tree, Acceessed
on 13 January 2023.

[Tig] Tigpan, Ecs swarms, https://assetstore.unity.com/
packages/tools/ai/flockai-227995, Acceessed on 13
January 2023.

[tur] turanszkij, Gpu fluid simulation, https://wickedengine.net/
2018/05/21/scalabe-gpu-fluid-simulation/, Acceessed on
13 January 2023.

44

https://github.com/Azure-Samples/cognitive-services-speech-sdk/blob/master/quickstart/csharp/unity/text-to-speech/README.md
https://github.com/Azure-Samples/cognitive-services-speech-sdk/blob/master/quickstart/csharp/unity/text-to-speech/README.md
https://github.com/Azure-Samples/cognitive-services-speech-sdk/blob/master/quickstart/csharp/unity/text-to-speech/README.md
https://github.com/Azure-Samples/cognitive-services-speech-sdk/blob/master/quickstart/csharp/unity/text-to-speech/README.md
https://syntystore.com/products/polygon-nature-biomes-season-one?_pos=4&_sid=d811435c1&_ss=r
https://syntystore.com/products/polygon-nature-biomes-season-one?_pos=4&_sid=d811435c1&_ss=r
https://syntystore.com/products/polygon-nature-biomes-season-one?_pos=4&_sid=d811435c1&_ss=r
https://www.geeksforgeeks.org/search-and-insertion-in-k-dimensional-tree
https://www.geeksforgeeks.org/search-and-insertion-in-k-dimensional-tree
https://assetstore.unity.com/packages/tools/ai/flockai-227995
https://assetstore.unity.com/packages/tools/ai/flockai-227995
https://wickedengine.net/2018/05/21/scalabe-gpu-fluid-simulation/
https://wickedengine.net/2018/05/21/scalabe-gpu-fluid-simulation/

..................................... A. Bibliography

[Unia] Unity, Burst compiler, https://docs.unity3d.com/Packages/
com.unity.burst@1.8/manual/index.html, Acceessed on 14
May 2023.

[Unib] , Ecs documentation, https://docs.unity3d.com/
Packages/com.unity.entities@1.0/manual/index.html, Ac-
ceessed on 13 May 2023.

[Unic] , Nativeparallelmultihashmap, https://docs.unity3d.
com/Packages/com.unity.collections@1.1/api/Unity.
Collections.NativeMultiHashMap-2.html, Acceessed on 8
May 2023.

[Unid] , Unity physics, https://docs.unity3d.com/Packages/
com.unity.physics@1.0/manual/index.html, Acceessed on 14
May 2023.

[Unie] , Unity physics - reflect, https://docs.unity3d.
com/Packages/com.unity.mathematics@1.2/api/Unity.
Mathematics.math.reflect.html, Acceessed on 14 May 2023.

[VCBJ+95] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen,
and Ofer Shochet, Novel type of phase transition in a system of
self-driven particles, Phys. Rev. Lett. 75 (1995), 1226–1229.

[Wika] Wikipedia, K-d tree, https://en.wikipedia.org/wiki/K-d_
tree, Acceessed on 13 January 2023.

[Wikb] , Spongebob, https://en.wikipedia.org/wiki/
SpongeBob_SquarePants, Acceessed on 20 May 2023.

45

https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html
https://docs.unity3d.com/Packages/com.unity.burst@1.8/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.collections@1.1/api/Unity.Collections.NativeMultiHashMap-2.html
https://docs.unity3d.com/Packages/com.unity.collections@1.1/api/Unity.Collections.NativeMultiHashMap-2.html
https://docs.unity3d.com/Packages/com.unity.collections@1.1/api/Unity.Collections.NativeMultiHashMap-2.html
https://docs.unity3d.com/Packages/com.unity.physics@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.physics@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.mathematics@1.2/api/Unity.Mathematics.math.reflect.html
https://docs.unity3d.com/Packages/com.unity.mathematics@1.2/api/Unity.Mathematics.math.reflect.html
https://docs.unity3d.com/Packages/com.unity.mathematics@1.2/api/Unity.Mathematics.math.reflect.html
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/SpongeBob_SquarePants
https://en.wikipedia.org/wiki/SpongeBob_SquarePants

46

Appendix B
Attachments

List of Acronyms

ECS Entity Component System

OOP Object Oriented Programming

Dots Data-Oriented Technology Stack

CTU Czech Technical University

ČVUT České Vysoké Učení Technické v Praze

CTU FEE Czech Technical University Faculty of Electrical Engineering

47

B. Attachments.....................................
Enclosed Files

Builds..1. WindowsBuild.exe..2. LinuxBuild.x84_64..3. ProjectionWallBuild.x84_64

Scripts

For the full Unity project feel free to contact the author of this work by email
filip.jazzowitch@gmail.com.

ECS..All scrits related to ECS implementation are situated in this folder
and its subfolders

Boids..Scripts related to the behavior of boids (prey and predators)
DummyEntities......................................Some objects
needed "dummy" Component and Authoring scripts to be successfully
transformed into Entites during baking. Component and Authoring
scripts for such objects are situated in this folder
Controllers...Scripts related to controllers for predators, prey, and
user interaction are located here
Ground Volumes . Scripts related to ground volumes are located here
Grounds.....Scripts related to spawn and feeding grounds that exist
within the ground volumes are located here
Shared..Scripts related to functionalities shared by multiple entities
across all categories are located here
Terrain.Scripts related to the transformation of terrain collider into
ECS world are located here

48

	Introduction
	Getting acquainted with the phenomenon
	Why do they flock
	Migrating birds
	Ants
	Bees
	Answer
	A Mystery

	Basic Concepts Of Animal Flocking
	Behavior relation to atoms of iron
	Criticality
	Self-organized criticality
	Emergent behavior

	Pre-implementation part
	Real-time vs. pre-computed algorithms
	Flocking in computer games vs science simulations
	Basic animal flocking algorithms
	Boids
	Self-driven particles
	Density induced transition in the school of fish
	Wolf-like behavior

	Available assets
	Suitable space partitioning structures
	Voronoi neighborhoods
	K-D Tree
	Cube space partition map

	Implementation
	Functionalities
	Obstacle Avoidance
	Boids flocking behavior
	Other optimizations

	Entities, Components and Systems terminology
	Basics
	Aspects and Authoring scripts
	Terminology Sum-up

	Dealing with the new technology and an error-prone code
	Decomposition of the operations
	File management
	Actively search for help

	Interactive screen options
	Multiple-touch screen tap-like interaction
	Speech recognition interaction
	Motion-capture based interaction
	Remote phone interaction
	Holographic projection
	User interaction limitations
	Chosen Interaction option

	Testing
	OOP and ECS approach comparison
	User testing

	Conclusion
	Bibliography
	Attachments
	List of Acronyms
	Enclosed Files
	Builds
	Scripts

